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Abstract

Interactive visualization of terrain and general complex surfaces is a difficult problem

that requires large data sets to be displayed and manipulated at high frame rates. Operations such

as rotation and panning must be supported so a user can examine the data in critical areas, while

maintaining highly accurate images. While previous surface approximation algorithms have yielded

accurate and attractive-looking images, these algorithms are using only a fraction of the power of

current graphics hardware due to being CPU bound. RUSTiC is an attempt to take advantage of the

simplicity and accuracy of ROAM (Real-time Optimally Adapting Meshes), a previously developed

surface approximation algorithm, while increasing the displayable polygon count by at least one

order of magnitude.
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Chapter 1

Introduction to RUSTiC

The collection and analysis of numerical data is an integral part of many scientific disci-

plines. For example, chemists collect and generate data on the structure of molecules, paleomag-

netists collect data on geological and magnetic features of rocks, and physicists collect data on how

gases interact under pressure. Unfortunately, interpreting numerical data is a difficult and time-

consuming task for humans, especially when the data sets are large. To further complicate matters,

as technology has improved, the complexity of the data to be analyzed has increased dramatically,

leading to increasing difficulty exploring that data.

Although computers are not very good at analyzing data automatically, they are good

at organizing and manipulating it. Visualization is centered around the idea that computers can

be used to help organize complex numerical data into pictures that are more easily interpreted by

humans. Various methods have been developed over the past twenty years to help visualize data with

computers. For example, satellite technology allows us to scan the surface of the Earth and record

the elevation of a geographic region (“height field data”). This data can be represented numerically
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as a two-dimensional (2D) array of elevations. A computer can be used to construct an accurate

model of the landscape the data was taken from, allowing easy analysis of terrain features.

In most types of visualization, terrain visualization included, it is useful for a user to be

able to examine the representation of data from any arbitrary viewpoint. Ideally, a user should be

able to rotate and zoom into the data so he/she can locate and examine interesting points quickly,

and there should be minimal delay between the computer updating the viewpoint. Typically, 30

updates (frames) per second are considered sufficient.

Computers are constrained by their CPUs and graphics hardware, used to update frames.

Requiring 30 frames per second, a computer has 33 milliseconds to do whatever processing the

algorithm requires and output a finite number of shapes before it has to start producing the next

frame. For large data sets, there is not enough CPU or graphics hardware time to display the entire

data set at full resolution between frames. One choice is to show fewer frames per second, but

users are very sensitive to the responsiveness of a program and will become quickly frustrated if the

program is not responsive enough. Also, reducing frame rates is an unacceptable choice in many

situations such as military simulations, where the responsiveness and real-time updating is critical.

The other choice is to reduce the geometric complexity of the data set so that the computer does not

have to spend so much CPU or graphics hardware time to display the data. Algorithms that reduce

the geometric complexity of the data are called surface approximation algorithms, and RUSTiC

belongs to this class of algorithms.

Previously developed state-of-the-art surface approximation algorithms, such as ROAM

[?], can render 6000 triangles per frame at 30 frames per second on a single R10000 SGI Onyx

processor with an Infinite Reality graphics board, yielding smooth and high-quality terrain render-
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ings. However, current Intel-based 80x86 processor derivatives with high-end graphics cards, such

as the NVidia GeForce, are capable of displaying upwards of 10 million textured triangles per sec-

ond. Thus, the ROAM method’s 180,000 triangles/second is only a meager 1.8� utilization of the

graphics hardware on such platforms. This implies that the ROAM algorithm is running out of CPU

time in between frames, not graphics hardware time. RUSTiC is an attempt to take advantage of the

simplicity and accuracy of the ROAM algorithm while increasing the displayable polygon count by

at least an order of magnitude. The goals of RUSTiC are to yield more accurate and higher-quality

images, while allowing a user to manipulate larger and more geometrically complex data sets.
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Chapter 2

The RUSTiC Method

The RUSTiC method is based on the same triangle bintree as ROAM [?]. Figure 2.1

shows the first six levels of the basic ROAM triangle bintree. The root triangle � = ���� ��� ��� is

defined to be a right-isosceles triangle at the coarsest level (� = 1). At the next level (� = 2), � is split

into the left child �� = ���� ��� ��� and the right child �� = ���� ��� ���, where �� is the midpoint of

the edge ���� ���. The rest of the bintree is defined by recursively repeating this splitting process for

the children.

Because any triangle can be split into exactly two right-isosceles children triangles, or

subtriangles (we then call the original triangle a parent triangle), we can organize the triangles as

a binary tree hierarchy. Figure 2.2 shows the first four levels of the triangle bintree and the bintree

hierarchy formed by the triangles. Starting with a root number of � = 1, the left child is always

numbered �� , and the right child is always numbered �� � �.
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Figure 2.1: Levels 1–6 of triangle bintree.
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Figure 2.2: Levels 1–4 of triangle bintree and resulting bintree hierarchy.
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A ROAM triangulation is formed in ROAM by assigning world-space coordinates to each

bintree vertex. Given a 2D array of data points to be visualized, the array is “covered” by two

root triangles, as shown in Figure 2.3. These root triangles serve as a coarse approximation of this

particular region in the data.

(A) (B) (C)

Figure 2.3: (A) shows a 5x5 grid of points. We note that these points do not need to be in a plane.
(B) shows the region covered by two level 1 triangles. (C) shows the world-space covered by four
level 2 triangles.

We note that, since the children triangles (e.g., �� and ��) on level � � � contain an

additional vertex (��) amongst them over the parent triangle (e.g., � ) on level �, the set of children

triangles collectively yields a better approximation of a surface than the parent triangles. When we

replace a parent triangle with its two children, we call this a split.

�� is called the base neighbor of triangle � sharing the edge ���� ���, �� is called

the left neighbor sharing the edge ���� ���, and �� is called the right neighbor sharing the edge

���� ���. A simple split replaces triangle � with its children ���� ��� and triangle �� with its chil-

dren ����� ����. If the triangle has no base neighbor, only triangle � is split. This splitting method

can be repeated recursively as long as a data point exists for �� to obtain better approximations of

some given surface. Merging of triangles works similarly. When triangle � and �� belong to the

same level, we call the pair ��� ��� a diamond. A merge can be applied to a diamond ��� ��� when
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all of the children of � and �� (if �� exists) are in the mesh. Figure 2.4 shows the basic split and

merge operations.

TB

T T0 T1

TB0 TB1

Split

Merge

TL TR

TBR

TBL

Figure 2.4: Split and merge operations on a bintree triangulation. Triangle � is split into subtriangles
�� and ��, and its base neighbor �� is split into subtriangles ��� and ���.

A triangle � on level � cannot be immediately split when its base neighbor �� is from

level � � �. In this case, triangle �� must be split first, which may require further recursive splits.

This is called forced splitting, and Figure 2.5 shows an example of forced splitting.

This splitting and merging of triangles is the same as in ROAM, and RUSTiC makes use

of the same split and merge queues to drive user-dependent optimization. ROAM starts from a set

of root triangles, as shown in Figure 2.3, and uses a dual-queue system to decide which triangles to

split to yield a better approximation, and which triangles need to be merged to decrease geometric

complexity.

The difference between ROAM and RUSTiC lies in the construction and display of trian-

gle clusters. ROAM starts with a set of root triangles, splits them into a set of continuous ROAM

triangulation triangles, and then it outputs each triangle in that ROAM triangulation individually.

RUSTiC follows the same process, except that a cluster of triangles is output instead of individual
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T
TB Forced Split

(A) (B)

(C) (D) (E)

Figure 2.5: Forced split operation. (A) shows a region of adjacent triangles, including � and �� .
(B) shows � split. However, �� must be split first, as shown in (C). But before �� can be split, its
base neighbor must be split, as shown in (D). The final state is shown in (E).
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ROAM triangles, as shown in Figure 2.6.

(A) (B)

Figure 2.6: (A) Original ROAM triangulation triangle generated by ROAM. (B) is a pre-constructed
cluster with 16 subtriangles that replaces (A) in the final mesh.

These triangle clusters must uphold the edge constraint: all possible adjacent clusters

must have the same edge boundaries so that the resulting clustered surface (the final mesh) is always

continuous. Figure 2.7 demonstrates the edge constraint by showing two adjacent mesh triangles and

two adjacent clusters for those triangles. Care must be taken when dealing with the edge constraint,

as any cluster edge can have two possible adjacent cluster edges. Figure 2.8 shows an example.

Any method may be used to construct the clusters as long as they adhere to the edge

constraint. Although the clusters may be constructed and then displayed at runtime, this markedly

slows down the algorithm. Since the bintree method of ROAM limits the location of vertices in the

ROAM triangulation, a better method is to construct the triangle clusters for each possible triangle in

the mesh in advance. This also allows the clusters to be “pre-packaged” in the most efficient method

possible for “quick shipping” to the graphics hardware, as the speed of the cluster construction

algorithm does not affect runtime speed. The number of triangles in each triangle cluster may be

selected independently. Optimally, this number is defined so that the graphics hardware is always

utilized.
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(A) (B)

(C)

(D)

Figure 2.7: (A) shows two adjacent ROAM triangulation triangles. (B) shows the pre-constructed
clusters for these triangles, each having 16 subtriangles. The adjacent edge is split in the same place
by each. (C) shows two adjacent clusters that do not uphold the edge constraint along (D). The final
mesh has a crack.
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(A) (B)

(C) (D)

(1)

(2)

(1)

(3)

Figure 2.8: (A) shows triangle (2) adjacent to triangle (1) in the ROAM triangulation. (B) shows
the pre-constructed clusters for triangles (1) and (2). (C) shows triangle (3) adjacent to triangle (1)
in the ROAM triangulation. (D) shows the pre-constructed clusters for triangles (1) and (3). In both
(B) and (D), the edge constraint is satisfied, despite the different pre-constructed clusters for (2) and
(3).
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Chapter 3

Constructing Clusters

We have devised three different methods for constructing clusters. Since ROAM-style

split and merge operations are used in the construction of the ROAM triangulation, we leverage that

framework in creation of the clusters. The non-trivial task during cluster construction is to always

maintain the edge constraint.

The three methods are:

� Simple split, an easy to implement method of clustering.

� Adaptive split, a method that builds adaptive clusters quickly when you don’t need to build

clusters down to the finest level.

� Adaptive merge, a method that gives more precise control over cluster size and has a smaller

memory footprint.
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3.1 The Simple Split Method

One of the features of ROAM triangulations is that left and right neighbors of some trian-

gle � are either from the same bintree level � as � or from the next finer level ���. Base neighbors

are either from level � or level � � �. Thus, all triangles in the ROAM triangulation are at most

one level different than adjacent triangles, and the entire mesh is continuous. The most obvious and

simple method of constructing clusters, the simple split method, is to split each ROAM triangulation

triangle into � evenly sized subtriangles, where � = �� and � is an non-negative even integer.

When � is an odd number, cracks in the mesh can occur: only the base edge of any

triangle is split, and the base edge of one triangle might be the left or right neighbor edge of another

triangle. This case is shown in Figure 3.1.

(A) (B)

(1)

(2)
(C)

Figure 3.1: Example for � = 1, � = 2. (A) shows two triangles in the ROAM triangulation. (B)
shows the clusters that result. There exists a crack at (C).

When � is even, each edge of the original base triangle is split exactly ���� � � times.

When the individual triangles in the ROAM triangulation are replaced with these triangles, the

surface will remain continuous because all edges have been split the same number of times. Figure

3.2 shows an example of this for � � �.

Given a cluster size of 16 �� � �� and using the ROAM renderer, we can output 6000
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(A) (B)

(1)

(2)
(C)

Figure 3.2: Example when � = 2, � = 4. (A) shows two triangles in the ROAM triangulation. (B)
shows the clusters that result. The edge at (C) is split at the same place on both sides.

base triangles times 16 triangles per cluster times 30 frames/second = 2.88 million triangles/second.

This is a 16-fold increase in the number of triangles over the original ROAM algorithm.

However, it should be noted that this method of cluster building is non-adaptive, as it does

not take into account which cluster triangles have the greatest errors and are prime candidates for

splitting. A great deal of overall adaptivity still remains, since the ROAM triangulation that ROAM

constructs is still done adaptively. Another downside of this method is the coarse control over the

number of triangles per cluster, since the choice of � is limited to powers of two.

3.2 The Adaptive Split Method

The adaptive split method improves upon the simple split method by both adding adaptive

behavior and increasing the level of control over the number of triangles per cluster. This yields

clusters that not only look better, but are better approximations of the surface. Like the simple split

method, we begin with an individual ROAM triangulation triangle. However, we are free to split this

triangle as many times as we like and in any order we like, using the normal ROAM split method,

so long as we adjust the clusters to ensure a continuous surface.
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Any triangle on level � can have up to two adjacent clusters per cluster edge (one on level

� and one on either level � � � or level � � � depending on the edge), as shown in Figure 2.8. When

we split across one of these cluster edges, we need to ensure that both clusters are updated or a

crack in the surface will result. The adjacent cluster on level � will be split automatically by the

normal ROAM split algorithm. However, the other cluster must be split explicitly, and we do this

by propagating the split up or down to that cluster level. An example is shown in Figure 3.3.

l = 2

(A)

l = 2

(B) (C)

l = 3

(D)

l = 3

(E)

possible base mesh

(F)

final mesh l = 2 w/propagate

(G) (H)

new final mesh

Figure 3.3: (A) shows four triangle clusters on level � = 2. (B) shows each of these clusters split
once. (C) shows eight new triangle clusters on level � = 3. (D) shows one of these triangles split
once (the other remain unsplit for simplicity). (E) shows a possible ROAM triangulation generated
by ROAM. We note that triangles from levels � = 2 and � = 3 appear. (F) shows what happens when
replacing the triangles in (E) with the corresponding triangles from (B) and (D). We note that there
are two places where cracks will now appear. The solution is to propagate the split from level � = 3
(D) to level � = 2 (B). Level � = 2 now looks like (G) after the split has been propagated. (H) is the
resulting final mesh from (E) with no cracks.

The easiest way to implement this method is to label the edges of all triangles according
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to the level of first triangle they appear in. In the initial triangles on level � = 1, the left edge label

���� and right edge label ���� are set to one, and the base edge label ���� is set to zero. Figure

3.4 shows the labeling scheme for a few levels.

l = 1

(A)

1 1

1

1

0

l = 2

(C)

l = 3

3

3

3

3

l = 3

(B)

1

1 1

1

11

1 1

0

3

3

3

2

2

2

2

3

0

(D)

Figure 3.4: (A) shows the initial labels for two triangles at level � = 1. (B) shows the new labels for
the edges added at level � = 2. (C) shows the new labels for the edges added at level � = 3. (D) shows
the labels for all edges at level � = 3.

We note that, for any given triangle � on level �, the cluster edges will always have edge

labels �� �, while interior edges (edges that are not on the cluster boundary) will have edge labels

	 �. Also, ���� and ���� have the same parity as �, while ���� has different parity from 
. When

a triangle is split across a cluster edge, the split needs to be propagated up to the next coarser level

(� � �) if the split is across the base edge, or down to the next finer level (� � �) if it is across a side

edge. This propagation scheme is summarized in Table 3.1.

For an example, consider the propagation shown in Figure 3.3: in step (D), the splitting of

the triangle on cluster level � = 3 splits the edge with label � = 2 (from Figure 3.4). Thus, the cluster
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cluster level � 	� edge level parity(cluster level) �� parity(edge level) propagate down to level � � �

cluster level � 	� edge level parity(cluster level) 	 � parity(edge level) propagate up to level � � �

cluster level � � edge level no propagation

Table 3.1: Various propagations necessary to maintain crack-free clusters.

level 	� the edge level. Also, since 3 is odd and 2 is even, parity(cluster level) 	 � parity(edge

level). Looking at Table 3.1, it lists this case in the second line, and thus we know we need to

propagate this split up a level (to level � = 2).

When creating all the clusters in advance, a simple procedure can be used. The steps of

this procedure are:

1. Start on level � = 1, and split the clusters to the desired number of triangles � (making sure to

split each triangle at least once). Any propagation up or down may be ignored since no other

triangle clusters on other levels exist at this time.

2. Copy the structure of the triangles on level � = 1 to the structure of the triangles on level � =

2, as shown in Figure 3.5.

(A) (B)

+

l = n l = n+1

Figure 3.5: (A) shows a cluster for some triangle on level � (B) illustrates how that cluster is copied
into two new triangles on level � � �. The cluster in (A) is split down the center, resulting in the
two subclusters shown in (B).

3. Split the triangles on level � = 2 to the desired triangle count � . We note that the triangles on
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level � = 2 may already have some subtriangles resulting from step 2. Also, one has to handle

upward propagation, since triangle clusters on level � = 1 now exist. However, downward

propagation to level 3 may be ignored.

4. Copy the triangles on level � = 2 to the triangles on level � = 3 in the same manner as before.

5. Repeat steps 3 and 4 for each level until the finest level in the data set is reached.

At first glance, it may seem that “propagate down” does not need to be implemented.

However, when creating the clusters on level � = �, one might propagate a split up to level � = �� �,

traverse across a couple of triangles on level � = ��� (via a ROAM forced split), and then propagate

a split back down to level � = �. An example of this is shown in Figure 3.6.

l = 4

(A)

l = 4

(F)

l = 4

(E)

l = 4

(D)

l = 5

(B)

l = 5

(C)

l = 5

(G)

l = 5

(H)

Figure 3.6: (A) shows some clusters built for a few half-triangles on level � = 4. (B) shows the
structure copied to level � = 5. (C) shows a split on level � = 5. This split propagates up to level � =
4 as shown in (D). We have a forced split in (E) that propagates up to level � = 3. We have another
forced split in (F) that propagates down to level � = 5 as shown in (G). Once all propagations are
done, one can do the forced split on level � = 5, as shown in (H).
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It is also possible that a split needs to be propagated, but the triangle to be split in the

destination cluster has not been created yet. An example of this is shown in Figure 3.7. This can

be easily solved: although the triangle has not been created yet, it is guaranteed that the triangle’s

parent exists. The parent can be split, yielding the child triangle that is the target of the propagated

split.

l = 2

(A) (B)

l = 3

(C)

l = 3

l = 2

(D)

l = 2

(F)

l = 2

(E)

Figure 3.7: (A) shows some unsplit clusters on level � = 2. (B) shows some unsplit clusters on level
� = 3. If we were going to split one of the clusters on level � = 3, such as in (C), it would propagate
up to level � = 2 as shown in (D). But we cannot split the clusters on level � = 2 in this fashion. First,
we have to split the clusters on level � = 2 as shown in (E), then we can propagate the split from (C)
up to level � = 2 as shown in (F).

The adaptive split method has a few disadvantages to it. First, although each cluster has

a target number of triangles � that it is split to when the cluster is being created, propagation may

cause additional splitting in the cluster, resulting in more than � triangles per cluster. Experiments

show that, when trying to achieve a target size of � triangles per cluster, where � = �� and �
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is an integer, the typical cluster size after all propagation is approximately �� (� = �� �� 
� ),

or approximately �� (� = �� �� �� ). This suggests adaptivity increases dramatically for � =

��� ��� ����  triangles per cluster. Table 3.2 shows the average number of triangles per cluster for

one particular experiment given different target values of � .

cluster on level 1 2 3 4 5 6 7 8 9
� = 8 15.5 12 9.88 8.78 8.29 8.1 8.02 8 8
� = 16 35.5 33.25 32.375 32.0625 32 32 30.02 15.01 8
� = 32 52.79 41.34 35.56 33.27 32.35 32.05 32 16 8
� = 64 132 130 128.88 128.19 121.12 60.56 32 16 8
� = 128 167.27 144.16 132.48 128.59 128 64 32 16 8

Table 3.2: Average number of triangles for all clusters on a given level, given a target of � triangles
per cluster using the adaptive split method.

The second drawback to the adaptive split method is that all clusters must be stored in

memory (or paged to disk) because splits can be propagated up or down at any time. This means

the memory footprint of this method is quite large for large data sets.

The primary advantage of using the adaptive split method is that the computation of adap-

tive clusters is fast if you do not need to generate clusters down to the finest level.

3.3 The Adaptive Merge Method

Although the adaptive split method is better than the simple split method, the recursion

makes it difficult to implement. The adaptive merge method yields the same benefits as the adaptive

split method without all the recursion. Whereas the adaptive split method is based on splitting

individual triangles, the adaptive merge method deals with merging diamonds. When two triangles

� and its base neighbor �� are on the same level �, the pair ��� ��� is called a diamond.

Given a target number of triangles per diamond � , where ���� ��� �� �� and � is an
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integer, we can begin tiling our data set with cluster diamonds (or half-diamonds along a boundary)

that contain exactly �� evenly-sized interior triangles. At this state, the mesh is continuous, as all

adjacent cluster diamond edges are split in the same places. Figure 3.8 shows an example.

Figure 3.8: A diamond (in the center) and adjacent half-diamonds, split into to 32 evenly sized
triangles.

We note that we may merge the interior diamonds of any cluster diamond, provided that

the merge does not cross a cluster diamond edge and the mesh will still remain continuous. The

same labeling scheme used in the adaptive split method can be used to determine which edges are

cluster diamond edges. When �� has the same parity as � and �� 	� �, that edge is a cluster

diamond edge. Figure 3.9 shows an example of a triangle within a diamond that may be merged and

one that may not be.
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(A) (B)

Figure 3.9: The cluster diamond in the center has cluster diamond edges (boldface). (A) is an
internal diamond that may be merged since it does not cross the cluster edges. (B) is a diamond that
may not be merged since it crosses the cluster edges.
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Once we are satisfied with our merging the interior diamonds of a diamond cluster, we

move up to the next coarser level of diamonds, copying the structure of the current level. Figure

3.10 shows this operation.

Figure 3.10: The top configuration is the mesh from Figure 3.9 with each diamond merged to 24
subtriangles. The bottom configuration is the result of copying the structure from one level of
clusters to the next coarser level. We note that all the subtriangles stay the same, only the cluster
boundaries move.

The edges that were unmergable in clusters on the previous level become mergable on this

level since they are now internal base edges. Also these clusters will typically consist of more than

� triangles. It is thus desirable to merge internal diamonds (not crossing the cluster diamond edges

for the diamond clusters on this level) until the target of � triangles is reached. Figure 3.11 shows
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an example of this.

Figure 3.11: Mesh shown in Figure 3.10 (bottom) reduced to � = 24 subtriangles.

The sequence of steps for this method:

1. Tile the data set with diamonds such that each diamond has �� triangles. Merge interior

diamonds until one has � triangles, or until no interior merges are possible. No merging over

the cluster diamond edges is allowed.

2. Create the diamonds on the next coarser level, copying the structure of the current level into

the new diamonds.

3. Merge interior diamonds on the new level until one has � triangles.

4. Repeat steps 2 and 3 until the coarsest level.

The adaptive merge method has several additional advantages over the adaptive merge

method. First, one is are always guaranteed approximately � triangles per cluster since there is no

propagation introducing additional splits after the cluster has been created. Second, once a given
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level of clusters is created, it can be saved to disk and the memory freed. Thus, the memory footprint

of this method is much smaller than the adaptive split method.
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Chapter 4

Results

One useful result is a measurement how much RUSTiC improves the accuracy of ROAM.

Table 4.1 shows some error results computed for one case using the Adaptive Split method. At this

time, we have not implemented an optimized runtime view-dependent display environment. Results

from doing so will be available when RUSTiC is published in a professional journal.
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� of triangles/clusters cluster size � final triangles ROAM error RUSTiC error
100 16 4151 739.625 320
200 16 5563 460.75 276
300 16 8854 427.375 256
400 16 9879 347.25 201.5
500 16 10928 308.375 201.5

1000 16 14663 214.875 166

100 32 8602 739.625 256
200 32 11709 460.375 203
300 32 13706 427.375 189.5
400 32 15069 347.25 189.5
500 32 16549 308.375 173

1000 32 20719 214.875 125
2000 32 25077 145.875 83.5
3000 32 26282 115 61
4000 32 27530 92 61

100 64 19861 739.625 138.5
300 64 23744 427.375 138.5
500 64 25393 308.375 91.5

1000 64 28711 214.785 61
2000 64 30196 145.875 45
3000 64 30688 115 27
4000 64 31281 92 27

1000 128 29428 214.875 31.5
2000 128 30539 145.875 25
3000 128 30985 115 19

Table 4.1: Error statistics for ROAM vs. Rustic.
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4.1 A 2.5D Example

Our algorithm was first applied to a United States Geographical Survey (USGS) data

set of Roswell, New Mexico. Figures 4.1 through 4.4 show a sample ROAM-generated ROAM

triangulation and the RUSTiC-clustered final mesh equivalent. The textures are colored based on

the height and are not shaded.

Figure 4.1: Base mesh constructed for Roswell data set.
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Figure 4.2: Final mesh constructed using clusters for Roswell data set.
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Figure 4.3: Base mesh with texture.
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Figure 4.4: Clustered final mesh with texture.
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4.2 A 3D Example

We applied the RUSTiC algorithm to a 3D data set produced with Mark Duchaineau’s

Catmull-Clark subdivision surface generator. This generator produced 96 “patches” of surface co-

ordinates that were then used as input for RUSTiC. The surface texture is pre-shaded using a red

light, blue light, and green light on the three axes. Figures 4.5 through 4.8 show a ROAM-generated

ROAM triangulation and the RUSTiC-clustered final mesh.

Figure 4.5: A 3D Catmull-Clark subdivision surface ROAM triangulation.
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Figure 4.6: Clustered final mesh for shape shown in Figure 4.5.
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Figure 4.7: Base mesh with texture.
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Figure 4.8: Clustered final mesh with texture.
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Chapter 5

Conclusion

The RUSTiC method is an improvement of the earlier ROAM technique and increases the

polygon count substantially, leading to higher-quality images and increased accuracy. Disadvan-

tages include increased algorithmic complexity, increased memory usage, and more pre-processing

steps.

An important part of RUSTiC is choosing an appropriate cluster size. Given the same final

triangle count, larger clusters will yield less accuracy than smaller clusters due to the edge constraint.

However, larger clusters mean more polygons will be output, increasing overall accuracy.

The original ROAM algorithm is a case of RUSTiC with a target cluster size of� � �. We

note that there is not much adaptivity possible when the target cluster size is less than 32 triangles

per cluster, due to the edge constraint.
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5.1 Implementation

The RUSTiC algorithm was developed at the Center for Applied Scientific Computing

(CASC), Lawrence Livermore National Laboratory, and at the Center for Image Processing and

Integrated Computing (CIPIC), University of California at Davis. Implementation and testing was

done on a Silicon Graphics O2 platform and a 4-processor Onyx2 with an InfiniteReality2 graphics

board running the Irix operating system. All programs were written from scratch using object-

oriented C++, and the graphics routines were implemented using OpenGL. The testing application

is interactive, allowing the user to rotate and zoom through a data set in real time. The Roswell

data set was provided by the United States Geographical Survey (http://www.usgs.gov). The 3D

Catmull-Clark subdivision surface was provided by Mark Duchaineau at Lawrence Livermore Na-

tional Laboratory.

5.2 Future Work

One problem with the current ROAM bintree-split method is that it touches a large amount

of scattered memory. Each possible triangle in the bintree is allocated individually, and thus indi-

vidual triangles can end up scattered throughout free memory. Using an efficient queuing method

to create the ROAM triangulation may not add much overhead, but it can further scatter data across

memory and makes data access less coherent. Unfortunately, this leads to a large amount of cache

inefficiency. Future work will involve optimizing the ROAM bintree-splitter to enhance cache co-

herency. Preliminary research indicates that the total amount of memory touched can be reduced by

at least 50 times and access made much more coherent. Using a cache- optimized bintree split can

yield incredible speedups on current hardware: optimizing 10K triangles using the queue method
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took 65 msec, while using a cache-optimized splitter took less than one msec. RUSTiC does not

need to be modified to take advantage of such optimizations because they only affect the ROAM

triangulation creation.

Another area of future work will change ROAM from a “triangle-based” algorithm into a

“diamond-based” algorithm. Preliminary ideas indicate that, by using a diamond-based structure,

one can cut per-triangle storage by over 70�. This will lead to a faster algorithm and better cacha-

bility. RUSTiC is compatible with such a structure change since the adaptive merge method is set

up to work with diamonds.
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